Exposure to a youthful circulaton rejuvenates bone repair through modulation of β-catenin
نویسندگان
چکیده
The capacity for tissues to repair and regenerate diminishes with age. We sought to determine the age-dependent contribution of native mesenchymal cells and circulating factors on in vivo bone repair. Here we show that exposure to youthful circulation by heterochronic parabiosis reverses the aged fracture repair phenotype and the diminished osteoblastic differentiation capacity of old animals. This rejuvenation effect is recapitulated by engraftment of young haematopoietic cells into old animals. During rejuvenation, β-catenin signalling, a pathway important in osteoblast differentiation, is modulated in the early repair process and required for rejuvenation of the aged phenotype. Temporal reduction of β-catenin signalling during early fracture repair improves bone healing in old mice. Our data indicate that young haematopoietic cells have the capacity to rejuvenate bone repair and this is mediated at least in part through β-catenin, raising the possibility that agents that modulate β-catenin can improve the pace or quality of fracture repair in the ageing population.
منابع مشابه
Exposure to a youthful circulation rejuvenates bone repair through modulation of b-catenin
The capacity for tissues to repair and regenerate diminishes with age. We sought to determine the age-dependent contribution of native mesenchymal cells and circulating factors on in vivo bone repair. Here we show that exposure to youthful circulation by heterochronic parabiosis reverses the aged fracture repair phenotype and the diminished osteoblastic differentiation capacity of old animals. ...
متن کاملErratum: Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...
متن کاملTGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملSwimming training alleviated insulin resistance through Wnt3a/β-catenin signaling in type 2 diabetic rats
Objective(s): Increasing evidence suggests that regular physical exercise improves type 2 diabetes mellitus (T2DM). However, the potential beneficial effects of swimming on insulin resistance and lipid disorder in T2DM, and its underlying mechanisms remain unclear. Materials and Methods: Rats were fed with high fat diet and given a low dosage of Streptozotocin (STZ) to induce T2DM model, and su...
متن کاملThe Effect of Mesenchymal Stem Cell and Aerobic Exercise on the Expression of β-catenin and GSK-3β Genes in Heart Tissue of Rats in the Experimental Model of Knee Osteoarthritis
Introduction: Proliferation has long been the main source of mesenchymal stem cells (MSCs) in tissue repair , cell therapy and tissue engineering strategies. On the other hand, regular exercise as part of a person’s daily routine may help manage pathological conditions. The aim of this study was to investigate the effect of mesenchymal stem cell injection and aerobic exercise on the expression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015